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ABSTRACT. Significance: Although multilayer analytical models have been proposed to
enhance brain sensitivity of diffuse correlation spectroscopy (DCS) measurements
of cerebral blood flow, the traditional homogeneous model remains dominant in clini-
cal applications. Rigorous in vivo comparison of these analytical models is lacking.

Aim: We compare the performance of different analytical models to estimate a cer-
ebral blood flow index (CBFi) with DCS in adults.

Approach: Resting-state data were obtained on a cohort of 20 adult patients with
subarachnoid hemorrhage. Data at 1 and 2.5 cm source-detector separations were
analyzed with the homogenous, two-layer, and three-layer models to estimate scalp
blood flow index and CBFi. The performance of each model was quantified via fitting
convergence, fit stability, brain-to-scalp flow ratio (BSR), and correlation with trans-
cranial Doppler ultrasound (TCD) measurements of cerebral blood flow velocity in
the middle cerebral artery (MCA).

Results: The homogeneous model has the highest pass rate (100%), lowest coef-
ficient of variation (CV) at rest (median [IQR] at 1 Hz of 0.18 [0.13, 0.22]), and most
significant correlation with MCA blood flow velocities (Rs ¼ 0.59, p ¼ 0.010) com-
pared with both the two- and three-layer models. The multilayer model pass rate was
significantly correlated with extracerebral layer thicknesses. Discarding datasets
with non-physiological BSRs increased the correlation between DCS measured
CBFi and TCD measured MCA velocities for all models.

Conclusions: We found that the homogeneous model has the highest pass rate,
lowest CV at rest, and most significant correlation with MCA blood flow velocities.
Results from the multilayer models should be taken with caution because they suffer
from lower pass rates and higher coefficients of variation at rest and can converge to
non-physiological values for CBFi. Future work is needed to validate these models
in vivo, and novel approaches are merited to improve the performance of the multi-
model models.
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1 Introduction
Diffuse correlation spectroscopy (DCS) is a low-cost, non-invasive optical technology for meas-
uring blood flow. DCS measures the temporal intensity autocorrelation (g2ðτÞ) of multiply scat-
tered light that has traveled from the source to the tissue surface. The decay rate of this curve is
related to the motion of red blood cells in the underlying tissue.1,2 Correlation diffusion theory is
used to estimate an index of blood flow (cm2∕s) from g2ðτÞ. When DCS is applied in the brain,
detected photons that carry information about cerebral hemodynamics have also interacted with
extracerebral layers (i.e., skull, scalp, and cerebral spinal fluid) by the nature of the non-invasive
measurement. Thus, signal contamination from extracerebral layers is a challenge with DCS.3,4

Typically, to enhance brain sensitivity, g2ðτÞ is measured at a single “long” source detector
separation (typically 2.5 to 3 cm for continuous wave DCS) to maximize the weight of photon
pathlengths that arises from the brain layer while ensuring an adequate signal-to-noise ratio
(SNR). The data are then fit to the semi-infinite solution to the correlation diffusion equation
(CDE) (dubbed in this work the homogenous model) to estimate an average blood flow index
(BFi) of the roughly banana-shaped region that spans from the source to the detector.5 Although
this method is the most commonly adopted due to the simplicity, the measured BFi reflects a
weighted average of cerebral and extracerebral hemodynamics. Alternatively, more complex
two- or three-layered models have been introduced to separate extracerebral from cerebral
hemodynamics.6–9 These multilayered methods have shown promise both in silico simula-
tions,10–12 in phantoms,7,9 and in vivo studies in animals,13 with limited application in
humans.3,4,8,14 However, the optimal approach for DCS analysis in adults is unclear, and a
rigorous comparison of these multilayer analytical methods in vivo is lacking.

In this study, we used a convenience sample of data collected from a cohort of 20 adult
patients with subarachnoid hemorrhage (SAH)15 to compare the performance of the homog-
enous, two-layer, and three-layer models. Performance was quantified via fitting convergence,
fit stability, brain-to-scalp flow ratio (BSR), and correlation with transcranial Doppler ultrasound
(TCD) measurements of cerebral blood flow velocity.

2 Methods

2.1 Experimental Design
Details of the dataset used for this study can be found in our former publication.15 In brief,
20 adult non-traumatic SAH patients who were undergoing treatment for cerebral vasospasm
in the neurocritical care unit at Emory University Hospital (Atlanta, Georgia, United States) were
enrolled and included for analysis. Patients were mostly female (N ¼ 14, 70%), with a mean ±
standard deviation age of 48.5� 10.1 years. Patients were monitored with DCS before, during,
and after administration of intrathecal nicardipine to treat cerebral vasospasm. For this study,
only the baseline period of monitoring prior to drug administration was included for analysis
(mean (std) duration = 2.5� 0.9 min, range of 0.5 to 3 min) to isolate a steady-state period
without significant physiological changes. This prospective, observational study was approved
by the Emory University Institutional Review Board. Written, informed consent was obtained
prior to the study initiation from all patients or their surrogates.

2.2 Extracerebral Layer Thickness
All patients had head computed tomography (CT) imaging as part of standard clinical care.
Axial images using a bone sequence were used to estimate skull and scalp thicknesses for
DCS analysis. Five measurements of each layer thickness were made in the frontal region of
the hemisphere used for DCS monitoring (Fig. 1); data were averaged to yield mean skull and
scalp layer thicknesses for each patient. Patients had a mean ± standard deviation scalp thick-
ness of 0.62� 0.23 cm, skull thickness of 0.59� 0.21 cm, and total depth to the brain (skull +
scalp) of 1.20� 0.32 cm.
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2.3 Measurement of Macrovascular Blood Flow Velocity with TCD
TCD (Dolphin IQ, Viasonix, Tennessee, United States) was performed per usual clinical care on
the morning of the study in N ¼ 18 patients. TCD data were acquired by a single operator. TCD
was performed 4.5� 1.9 h (mean ± standard deviation) before DCS monitoring. For compari-
son with DCS, the maximum of the time-averaged mean velocities for the middle cerebral artery
(MCA) and anterior cerebral artery (ACA) on the hemisphere of DCS monitoring were used.16

2.4 Diffuse Correlation Spectroscopy
Data acquisition is described in depth in Sathialingam et al.15 In brief, DCS data were acquired at
20 Hz using an 852 nm source with one detector placed at 1.0 cm and seven detectors bundled
together at 2.5 cm. The DCS sensor was place on the forehead of the hemisphere with the higher
MCA velocities on TCD, suggesting worse cerebral vasospasm. If vasospasm was observed in
both hemispheres, the sensor was placed on the hemisphere with higher detected light intensities
to maximize the SNR. To improve the SNR, measured g2ð2.5 cm; τÞ were averaged across
all seven detectors, and then g2 at both source detector separations, ρ, were down sampled by
integrating the 20 Hz data for 1, 3, or 10 s.

To estimate brain blood flow, data were analyzed using three different models of the
head (Fig. 2):

1. Homogenous model: this model treats the head as a uniform, infinitely extending medium
[Fig. 2(a)]. To estimate a BFi for each ρ and time, , g2ðτ; ρ; tÞ were simultaneously fit for
Bfiðρ; tÞ and coherence factor (βðρ; tÞÞ using the following cost function:

EQ-TARGET;temp:intralink-;sec2.4;117;476χ2 ¼
XNτ

k¼1

½g2;homogeneousðτk;BFi; β; ρ; tÞ − g2;measuredðτk; ρ; tÞ�2;

where g2;homogeneous is the semi-infinite solution to the CDE,1 assuming an absorption
coefficient (μa) of 0.2 cm−1, a reduced scattering coefficient (μ 0

s) of 10 cm−1, and a tissue
index of refraction (n) of 1.4. Nτ is the number of delay times, τ; for ρ ¼ 1.0 cm, Nτ is the
length of g2ðτ; ρ ¼ 1.0; tÞ, and for ρ ¼ 2.5 cm, Nτ is the number of τ for which
g2ðτ; ρ ¼ 2.5; tÞ > 1.2 to weight the fit toward photons that have traveled deeper.5 The
fminsearchbnd function in MATLAB (Mathworks, Natick, Massachusetts, United States)
was used to minimize χ with bounds for Bfiðρ; tÞ ∈ [1e-11, 1e-5] cm2∕s and βðρ; tÞ ∈
[0.40, 0.55]. A loose bound for Bfi was intentionally chosen to enhance the robustness
of the results. Similarly, Bfiðρ; tÞand βðρ; tÞ were fit simultaneously to minimize errors in
the estimation of Bfi.17 For comparison with other models, we defined Bfiðρ ¼ 1.0; tÞ as
the scalp BFi (SBFi) and Bfiðρ ¼ 2.5; tÞ as the cerebral BFi (CBFi).

2. Two-layer model: this model treats the head as a series of two infinitely extending slabs, in
which the top slab encompasses extracerebral tissue and the bottom layer encompasses the

Fig. 1 Representative measurements of scalp and skull layer thicknesses. Five separate mea-
surements of scalp (in pink) and skull (in blue) layer thicknesses were made on an axial slice
of the CT image. Measurements were made in the frontal region approximately where the
DCS sensor was placed during monitoring.
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brain [Fig. 2(b)]. To estimate the blood flow in each of these layers, g2ðτ; ρ; tÞ were simul-
taneously fit for an SBFi and CBFi using the following cost function;

EQ-TARGET;temp:intralink-;sec2.4;114;547χ2 ¼
XNr

j¼1

XNτ

k¼1

½g2;two−layerðρj; βj; τk; Lextra; SBFi;CBFiÞ − g2;measuredðρj; τkÞ�2;

where g2;two−layer is the two-layer solution to the CDE,8 assuming μa of both layers to be
0.2 cm−1, μ 0

s of both layers to be 10 cm−1, the tissue index to be refraction of 1.4, and the
thickness of the top layer (Lextra) to be the sum of the scalp and skull thicknesses measured
from the CT image (Sec. 2.3). Nr is the number of ρ (ρj ∈ [1.0, 2.5] cm), and Nτ is the
number of τ, equal to the length of g2. The coherence factor for each ρ (βj) was assumed to
be βðρ; tÞ as obtained from the above homogeneous model. The fminsearchbnd function
was used to minimize χ with bounds for SBFiðtÞ and CBFiðtÞ ∈ [1e-11, 1e-5] cm2∕s.

3. Three-layer model: this model treats the head as a series of three infinitely extending slabs
that mimic the scalp, skull, and brain layers of the head [Fig. 2I]. To estimate blood flow in
each of these layers, g2ðτ; ρ; tÞ were simultaneously fit for a SBFi and CBFi using the
following cost function:

EQ-TARGET;temp:intralink-;sec2.4;114;365χ2 ¼
XNr

j¼1

XNτ

k¼1

½g2;three−layerðρj; βj; τk; Lscalp; Lskull; SBFi;CBFiÞ − g2;measuredðρj; τkÞ�2;

where g2;three−layer is the three-layer solution to the CDE,8 assuming μa of each layer to be
0.2 cm−1, μ 0

s of each layer to be 10 cm−1, a tissue index of refraction of 1.4, a negligible
skull blood flow (0), and scalp and skull thicknesses (Lscalp and Lskull) from CT measure-
ments. Nr is the number of ρ (ρj ∈ [1.0, 2.5] cm), and Nτ is the number of τ, equal to the
length of g2. The coherence factor for each ρðβjÞ was assumed to be βðρ; tÞ as obtained
from the homogeneous model above. The fminsearchbnd function was used to minimize
χ with bounds for SBFiðtÞ and CBFiðtÞ ∈ [1e-11, 1e-5] cm2∕s.

Several quality metrics were implemented for these fits. First, for each t, the fit must con-
verge, i.e., the “exitflag” variable in fminsearchbnd must equal 1. Second, because we often
observed fits that converged to the fitting bounds (Fig. 3), we discarded frames in which SBFi
or CBFi do not fall within [2e-11, 9e-6] cm2∕s. We defined passing datasets as those in which
>50% of time points from the entire monitoring session met these two-quality metrics.

2.5 Statistical Analysis
Data are reported as median (interquartile range [IQR]) or count (percentage). To investigate the
relationship between model pass rate and extracerebral layer thickness, Wilcoxon rank sum tests
were used to test for differences in scalp, skull, and extracerebral (scalp + skull) thicknesses
between datasets that passed versus failed. To evaluate the stability of each model during the
monitoring period, the coefficient of variation (CV) was quantified as the ratio of standard
deviation to the mean of CBFi across the monitoring window (∼2.5 min). Paired Wilcoxon

Fig. 2 Representations of the human head. (a) Homogeneous model. (b) Two-layer model includ-
ing extracerebral and cerebral layers. (c). Three-layer model including a scalp, skull, and cerebral
layer. Here S denotes the source, and D denotes the detector.
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signed rank tests were used to assess differences in the CV in the homogenous model versus the
two- and three-layered models and for CV differences in the two- versus three-layer model. BSR
was defined as the ratio of mean CBFi to mean SBFi over the monitoring period. Paired
Wilcoxon signed rank tests were used to test for differences in the BSR between models.
The Spearman correlation coefficient, Rs, was used to investigate the correlation between the
BSR and layer thickness. Finally, to compare DCS with TCD, Rs was used to assess the corre-
lation between mean CBFi over the monitoring period from each model and MCA and ACA
blood flow velocities. All statistical analyses were performed in MATLAB. Significance was
assessed at the 0.05 level.

3 Results
Twenty datasets were included for analysis. The median [IQR] signal intensity was 437 (351,
478) kcps at 1 cm and 19 (17, 38) kcps at 2.5 cm. Median [IQR] βðρ ¼ 1 cmÞ estimated with
the homogenous model was 0.46 (0.43, 0.47) and βðρ ¼ 2.5 cmÞ was 0.46 [0.44, 0.47]. No
significant difference in the coherence factor was observed between source detector separations
(p > 0.05).

3.1 Fitting Quality
All datasets (100%) analyzed with the homogenous model passed the quality criteria outlined in
Sec. 2.4. Median [IQR] resting-state SBFi was 0.84 [0.47, 1.10] e-8 cm2∕s and CBFi was 0.92
[0.60, 1.33] e-8 cm2∕s with this model. By contrast, 10/20 (50%) datasets passed with the two-
layer model, and 14/20 (70%) datasets passed with the three-layer model (Fig. 4). For the three
integration times tested (1, 3, and 10 s), the fraction of data that passed for any given model was
independent of SNR (Fig. 4). For the two-layer model, median [IQR] SBFi for passing datasets
was 0.58 [0.42, 1.02] e-8 cm2∕s and CBFi was 4.14 [2.75, 8.42] e-8 cm2∕s. For the three-layer
model, median [IQR] SBFi for passing datasets was 0.85 [0.62, 1.12] e-8 cm2∕s and CBFi was
5.30 [3.60, 15.65] e-8 cm2∕s.

For the two- and three-layer models, the fraction of datasets that passed the quality criteria
was related to the layer thickness. Both the skull and total extracerebral thicknesses were smaller
in the datasets that passed versus those that failed (all p < 0.05, Fig. 5). For example, the median
[IQR] extracerebral thickness for passed datasets using the three-layer model was 0.96 (0.91,
1.26) cm versus 1.54 (1.43, 1. 76) cm for failed datasets (p ¼ 0.001). The scalp thickness in
passed versus failed datasets also trended toward lower values although the difference was only
statistically significant for the three-layer model (p ¼ 0.043).

Fig. 3 Representative intensity autocorrelation fits. Measured g2ðτÞ at 1 (purple) and 2.5 cm (pink)
fit to the (a) homogeneous, (b) two-layer, and (c) three-layer models. Solid lines denote measured
data (3 s integration), and dotted lines denote the best fit. Data were obtained on a patient with
scalp and skull thicknesses of 0.56 and 0.85 cm, respectively. The homogeneous model resulted
in SBFi = 1.61e-8 cm2∕s and CBFi = 1.55e-8 cm2∕s; the two-layer model resulted in SBFi = 1.52e-
8 cm2∕s and CBFi = 1e-11 cm2∕s; and the three-layer model resulted in SBFi = 0.19e-8 cm2/s and
CBFi = 22.7e-8 cm2∕s. Although all models generally fit the data well, the two-layer model yielded
a CBFi value that fell on the fitting bounds (1e-11 cm2∕s).
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3.2 Coefficient of Variation
In general, we observed that the stability of CBFi over the resting state monitoring window was
highest for the homogenous model [representative time series in Fig. 6(a)]. Figure 6(b) shows the
CV of CBFi over the resting-state monitoring period for all passing datasets and all analysis
models. The CV was smallest for the homogenous model. At an integration time of 1 s, the
median [IQR] CV for the homogenous model was 0.18 (0.13, 0.22) versus 0.27 (0.20, 0.39)
for the two-layer model and 0.26 (0.18, 0.33) for the three-layer model (both p < 0.01). The
CV for the two-layer model was significantly higher than that of the three-layer model for all
integrations time tested (all p < 0.01, N ¼ 10, paired Wilcoxon signed rank test). The CV for all
analysis models decreased with increased integration times. The CV of SBFi was not statically
different across models (Fig. 10).

3.3 Brain-to-Scalp Flow Ratio
The median BSR was highest for the three-layer model (7.4 [4.0, 21.3] versus 6.1 [5.3, 13.3] for
the two-layer model and 1.3 [1.0, 1.8] for the homogeneous model, Fig. 7). For all models, the
BSR was insensitive to the SNR (data not shown). Limited literature suggests that the BSR
should be ∼3 to 10 for healthy adults;18 however, we observed several subjects with BSRs that
were an order of magnitude greater than this expected range. Thus, we imposed a loose quality
criterion that the BSR ∈ [1, 25]. After applying this criterion, the median [IQR] BSR was 6.6
[3.0, 11.9] for three-layer (N ¼ 12), 5.4 [3.8, 7.9] for two-layer (N ¼ 8), and 1.5 [1.2, 1.8] for
homogenous (N ¼ 15). Interestingly, for the three-layer model (Fig. 8), the BSR was signifi-
cantly positively correlated with the scalp (p ¼ 0.010) and extracerebral (p < 0.001) thicknesses.
And these trends were less pronounced when only considering the BSR ∈ [1, 25]. For the two-
layer model, the BSR was only significantly positively correlated with the extracerebral thick-
ness. But these trends were no longer significant when only considering the BSR ∈ [1, 25].

Fig. 5 Dependence of multilayer model pass rate on the extracerebral thickness. Boxplots of
(a) scalp, (b) skull, and (c) extracerebral, i.e., scalp + skull, thicknesses dichotomized by datasets
that passed (blue) and failed (red) for the two- and three-layer models. p-values determined by the
Wilcoxon rank sum test.

Fig. 4 Pass rate by model. Bar plot of the percentage of datasets (N ¼ 20) that passed quality
criteria when using the homogeneous (purple), two-layer (green), and three-layer models (orange).
Shaded bars represent increasing SNR by averaging data 1 (light), 3 (medium), or 10 s (dark).
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3.4 Correlation with TCD
A significant correlation between TCD measurements of MCA blood flow velocity and
CBFi was observed with the homogeneous model (Rs ¼ 0.59, p ¼ 0.010, N ¼ 18, Fig. 9).
No correlation was observed with CBFi from the two- or three-layer model. Imposing criteria
that the BSR ∈ [1, 25] improved the correlation for the homogeneous model (Rs ¼ 0.65,
p ¼ 0.018, N ¼ 13), and the correlation became statistically significant for the two-layer model
(Rs ¼ 0.79, p ¼ 0.048, N ¼ 7) and trended toward significance for the three-layer model
(Rs ¼ 0.47, p ¼ 0.146, N ¼ 11). Correlations between TCD-measurements in the ACA and
CBFi from all models were not statistically significant (data not shown).

4 Discussion
Herein, we use a clinical dataset from a cohort of adult hemorrhagic stroke patients to test the
performance of several commonly used fitting paradigms for estimating brain blood flow with
DCS. Because we lacked a ground truth cerebral blood flow assessment in this dataset, we

Fig. 7 Brain-to-scalp flow ratio. Data were estimated using the homogeneous (in purple, N ¼ 20),
two-layer (in green, N ¼ 10), and three-layer models (in orange, N ¼ 14). BSR within ∼3 to 10 is
highlighted in the yellow region. p-values were estimated using a paired Wilcoxon signed rank test
between different methods.

Fig. 6 Variation in CBFi at rest. (a) Example time series of CBFi estimated with the homogeneous,
two-layer, and three-layer models (in purple, green, and orange, respectively) at 1 s integration
time, along with the corresponding CV. (b) Boxplots of the CV of CBFi for datasets that pass
quality control with the homogeneous (purple, N ¼ 20), two-layer (green, N ¼ 10), and three-layer
models (orange, N ¼ 14). Shaded boxes represent increasing SNR by averaging data 1 (light),
3 (medium), and 10 s (dark). � � p < 0.01 for a paired Wilcoxon signed rank test with the homog-
enous model. � � �p < 0.001 for a paired Wilcoxon signed rank test with the homogeneous model.
##p < 0.01 for a paired Wilcoxon signed rank test with the two-layer model.
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focused the investigation on fitting quality metrics as well as comparison with TCD blood flow
velocities. We found that the homogeneous model has the highest pass rate, lowest CV at rest,
and most significant correlation with MCA blood flow velocities. Results using the multilayer
model suffer from lower pass rates and higher coefficients of variation at rest and can converge
to non-physiological values for CBFi. These results highlight the challenges of implementing
multilayered models in human datasets in which a large fraction of data fails to converge,

Fig. 9 Relationship between TCD measured MCA mean velocity and DCS measured CBFi using
the (a) homogeneous (N ¼ 18), (b) two-layer (N ¼ 9), and (c) three-layer models (N ¼ 13) for the
datasets with both TCD data and DCS data that passed quality criteria. Black circles denote data
points with BSRs outside the range of [1, 25].

Fig. 8 Relationship between the BSR and layer thickness. BSR as a function of (a)–(c) scalp,
(d)–(f) skull, and (g)–(i) total extracerebral layer thicknesses using the homogeneous (left column,
N ¼ 20), two-layer (middle column, N ¼ 10), and three-layer models (right column, N ¼ 14)).
Black circles denote data points with BSR outside the range of [1, 25]. Spearman correlation coef-
ficients and associated p-values are shown for all data (color text) and for data with BSR ∈ [1, 25]
(black text).
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which emphasizes the need for novel approaches that improve the performance of multimodel
models.

The multilayered model fitting suffered from lower pass rates compared with the homog-
enous model (Fig. 4), which has previously been noted for the three-layer model in juvenile
pigs.13 This trend was independent of the SNR for the integration times that we investigated;
however, the pass rate will likely decrease at higher sampling frequencies in which the SNR
is significantly reduced because these models have been shown to be highly sensitive to
noise.12,19 One striking, although not surprising, finding was that the pass rate of the multilayer
model fitting was significantly influenced by the extracerebral layer thickness. This trend was
most prominent in the three-layer model, although it was also seen in the two-layer model. This
result suggests that the multilayer models work best for subjects with thinner extracerebral layers.
We speculate that this correlation is caused by limited brain sensitivity for some subjects with the
2.5 cm source detector separation used in this study. Novel approaches that improve SNR and
enable larger source detector separations20,21 may improve the performance of these multilayer
models.

In addition to fitting pass rates, we also investigated the CVof each model across the resting-
state monitoring period. We found that CBFi CV was highest with the two-layer model, although
both multilayered models had a significantly higher CV than the homogeneous model. Although
blood flow in the brain at the sampling frequencies chosen here (1, 0.3, and 0.1 Hz) can change
with respiration, neural activity, and other physiological variations, the increased CV of CBFi
may indicate instability of the multilayered model fitting given the magnitude of the variations
observed. For example, with TCD, it has been shown that the CV of mean cerebral blood flow
velocity was 0.093,22 which is significantly less than the ∼0.25 CV that we observed for both
multilayer models.

The BSR was significantly higher when using multilayer models compared with homo-
geneous model, similar to observations from Verdecchia et al.13 using the three-layer model
in juvenile pigs. Although literature about the expected BSR is sparse, a range of 3 to 10 has
been suggested as a reasonable approximation for healthy adults.18 We had several datasets from
both the homogenous model and the multilayer models that fell well outside of this expected
range. For the homogenous model, data were always discarded because of a low BSR (<1),
presumably due to limited brain sensitivity. For the multilayer models, data were discarded due
to a non-physiologically high BSR (>25). The reason for these large outliers is less clear;
they could be due to errors in the layer thickness or assumed optical properties or to head
curvature.10–12 Regardless, it appears that there may be crosstalk between the extracerebral layer
thickness and BSR for the three-layer model as well as, to a lesser extent, the two-layer model.19

We found that CBFi estimated with the homogenous model was significantly positively
correlated with TCD blood flow velocities in the MCA obtained on the same day. Given that
the TCD and DCS measurements were often acquired hours apart, a lack of correlation between
DCS and TCD would be difficult to interpret given the patients’ possible hemodynamic insta-
bility. However, the presence of correlation is promising. We speculate that, if the measurements
were taken simultaneously, the strength of the correlation between the homogenous model CBFi
and MCA velocities would improve. Interestingly, a similar correlation was also observed
between MCA velocities and SBFi from the homogenous model (Fig. 11), presumably due
to the strong correlation between CBFi and SBFi with this model (R ¼ 0.69, p ¼ 0.001, data
not shown). Similar correlations between CBFi and TCD were not seen with the multilayer mod-
els. This lack of correlation was somewhat expected given prior in silico work that demonstrates
that these models are highly sensitive to inaccuracies in the layer thickness and brain optical
properties, as well as the head curvature.10–12 Nevertheless, it is encouraging that, by excluding
obvious outliers in BSR, a positive correlation with TCD begins to emerge for both the two- and
three-layer models (Rs ¼ 0.79, p ¼ 0.048 and Rs ¼ 0.47, p ¼ 0.146, respectively). This result
aligns with Wu et al.’s suggestion that the BSR could be used as a quality metric for all models to
indicate whether CBFi truly reflects a marker of cerebral perfusion.23 Because not all data passed
all three models, different sample sizes were used for the correlation analysis across the models.
We acknowledge that this sample size disparity is a limitation because the statistical power to
detect a significant correlation may be different due to the varying sample sizes. However, we
conducted a sensitivity analysis of the nine subjects whose data passed all three models, and the
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results were similar to that presented in Fig. 9 (Rs ¼ 0.57, p ¼ 0.121; Rs ¼ 0.38, p ¼ 0.313;
Rs ¼ 0.28, p ¼ 0.463 for the homogenous, two-layer, and three-layer models, respectively).
Finally, we point out that hematocrit varied across the cohort (median [IQR] of 34 [27, 36] %).
Because hematocrit can significantly confound DCS measurements,24 the correlation between
DCS and TCD may further improve with the development of validated approaches to correct
DCS for hematocrit.

Given the relatively poorer performance of the multilayer model fitting in terms of pass rates
and CV, we investigated ways to improve the fitting stability of these models by adding con-
straints on SBFi. We tried both fixing SBFi to BFihomogenoeusðρ ¼ 1 cmÞ and constraining SBFi to
�20% of BFihomogenoeusðρ ¼ 1 cmÞ, motivated by Forti et al.19 In general, neither of these con-
straints improved the multilayer model performance in terms of the pass rate or CV. We did note
that fixing SBFi significantly increased the BSR with the three-layer model (7.4 [4.0, 21.3] for
fitted SBFi versus 13.3 [6.2, 39.6] for fixed SBFi, p ¼ 0.002). This effect is likely because
BFihomogeneousðρ ¼ 1 cmÞ does not solely reflect the scalp flow. Rather, it is likely influenced
by both the scalp and skull, thereby artificially decreasing the estimate of SBFi (Fig. 10).

The main limitation of this work is that the data were acquired at a single combination of
SDS (1 and 2.5 cm). Although these separations are commonly used in the continuous wave DCS
literature, it remains to be seen whether these results would hold true for different SDS combi-
nations. With improvements in DCS hardware that enable larger SDS,25–27 the utility of multi-
layered modeling should be re-evaluated, as the enhanced depth penetration of the second
separation would likely improve model performance. Another limitation of this study is that
it was not designed to determine which model is most accurate for use in human datasets.
Future prospective validation studies against other perfusion modalities are warranted. Moreover,
this study only compared analytical models during the resting state. The performance of different
analytical models should be further assessed during perturbations that induce disparate scalp and
brain blood flow responses.

In the future, the performance of the multilayer models and the strength of their correlations
with TCD could likely be improved by implementing novel approaches that incorporate mea-
surements of layer optical properties,10 as in a recent work that combines two-layer diffuse optics
spectroscopy with DCS.9 Furthermore, more work is needed to assess the accuracy of “relative
changes” in CBFi estimated with the multilayer models, which should be significantly less
sensitive to these confounding variables.11

5 Conclusion
In this study, we compared the fitting quality of the homogeneous model against multilayer mod-
els using a DCS dataset collected on SAH patients. We demonstrated that the homogeneous
model has the highest passing rate, lowest CV at rest, and highest correlation with TCD MCA
blood flow velocity measurements. Additionally, the three-layer model outperformed the two-
layer model in terms of a data pass rate. Notably, this pass rate was significantly correlated with
extracerebral layer thicknesses.

6 Appendix: Measured SBFi from All Models
Figure 10(a) shows the SBFi for each analytical model. SBFi measured with the three-layer
model was significantly higher than the homogeneous model (p ¼ 0.0001, N ¼ 14) and
two-layer model (p ¼ 0.0019, N ¼ 10). No differences were observed in SBFi between the
homogeneous and two-layer models (p > 0.05, N ¼ 10). In addition, the CV in SBFi was not
different across models [Fig. 10(b)].

A significant correlation was observed between SBFi and CBFi when using the homo-
geneous model (Rs ¼ 0.69, p ¼ 0.001, N ¼ 20). No correlation was observed between SBFi
and CBFi when using multilayer models (both p > 0.5). Consequently, a significant correlation
between TCD measurements of the MCA blood flow velocity and SBFi was observed with the
homogeneous model (R ¼ 0.54, p ¼ 0.020, N ¼ 18, Fig. 11). No correlation was observed
between the MCA blood flow velocity and SBFi from the two- or three-layer models. These
trends persist even after imposing criteria that the BSR ∈ [1, 25] (Rs ¼ 0.61, p ¼ 0.030,
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N ¼ 13 for the homogenous model; Rs ¼ 0.57, p ¼ 0.200, N ¼ 7 for the two-layer model; and
Rs ¼ 0.31, p ¼ 0.356, N ¼ 11, for the three-layer model).

Disclosures
The authors declare that the research was conducted in the absence of any commercial or finan-
cial relationships that could be constructed as a potential conflict of interest.

Code and Data Availability
Data underlying the results presented in this paper are not publicly available at this time but are
available from the corresponding author upon reasonable request.

Acknowledgments
This research was supported by American Heart Association (Grant No. Pre1020231; HZ) and
National Institute of Neurological Disorders and Stroke (Grant No. R01NS13003601; EMB
and OS).

References
1. T. Durduran et al., “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701

(2010).
2. S. A. Carp et al., “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow

with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitor-
ing,” Biomed. Opt. Express 1(2), 553–565 (2010).

Fig. 10 SBFi measured from all models. (a) Boxplot of SBFi for the homogeneous (in purple,
N ¼ 20), two-layer (in green, N ¼ 10), and three-layer models (in orange, N ¼ 14). p-values are
calculated with pairedWilcoxon signed rank test between different methods. (b) Boxplots of the CV
of SBFi for 10 datasets that passed quality metrics in all models. Shaded boxes represent increas-
ing SNR by averaging data 1 (light), 3 (medium), and 10 s (dark).

Fig. 11 Relationship between TCDmeasured MCA mean velocity and DCS measured SBFi using
the (a) homogeneous (N ¼ 18), (b) two-layer (N ¼ 9), and (c) three-layer models (N ¼ 13) for the
datasets with both TCD data and DCS data that passed quality criteria. Black circles denote data
points with BSRs outside the range of [1, 25].

Zhao et al.: Comparison of diffuse correlation spectroscopy analytical models. . .

Journal of Biomedical Optics 126005-11 December 2023 • Vol. 28(12)

https://doi.org/10.1088/0034-4885/73/7/076701
https://doi.org/10.1364/BOE.1.000553


3. M. M. Wu et al., “Improved accuracy of cerebral blood flow quantification in the presence of systemic
physiology cross-talk using multi-layer Monte Carlo modeling,” Neurophotonics 8(1), 015001 (2021).

4. D. Milej et al., “Direct assessment of extracerebral signal contamination on optical measurements of cerebral
blood flow, oxygenation, and metabolism,” Neurophotonics 7(4), 045002 (2020).

5. J. Selb et al., “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain
near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).

6. L. Gagnon et al., “Investigation of diffuse correlation spectroscopy in multi-layered media including the
human head,” Opt. Express 16(20), 15514–15530 (2008).

7. J. Wu et al., “Two-layer analytical model for estimation of layer thickness and flow using diffuse correlation
spectroscopy,” PLoS One 17(9), e0274258 (2022).

8. J. Li et al., “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectros-
copy,” J. Biomed. Opt. 10(4), 044002 (2005).

9. R. M. Forti et al., “Non-invasive diffuse optical monitoring of cerebral physiology in an adult swine-model of
impact traumatic brain injury,” Biomed. Opt. Express 14(6), 2432 (2023).

10. H. Zhao, E. Sathialingam, and E. M. Buckley, “Accuracy of diffuse correlation spectroscopy measurements
of cerebral blood flow when using a three-layer analytical model,” Biomed. Opt. Express 12(11), 7149
(2021).

11. H. Zhao and E. M. Buckley, “Influence of oversimplifying the head anatomy on cerebral blood flow
measurements with diffuse correlation spectroscopy,” Neurophotonics 10(1), 015010 (2023).

12. H. Zhao and E. M. Buckley, “Influence of source-detector separation on diffuse correlation spectroscopy
measurements of cerebral blood flow with a multilayered analytical model,” Neurophotonics 9(3), 035002
(2022).

13. K. Verdecchia et al., “Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring
cerebral blood flow in adults,” Biomed. Opt. Express 7(9), 3659 (2016).

14. L. N. Shoemaker et al., “Using depth-enhanced diffuse correlation spectroscopy and near-infrared spectros-
copy to isolate cerebral hemodynamics during transient hypotension,” Neurophotonics 10(2), 025013 (2023).

15. E. Sathialingam et al., “Microvascular cerebral blood flow response to intrathecal nicardipine is associated
with delayed cerebral ischemia,” Front. Neurol. 14, 1052232 (2023).

16. R. Aaslid, Transcranial Doppler Sonography, pp. 22–38, Springer-Verlag, Wien (1986).
17. L. Dong et al., “Simultaneously extracting multiple parameters via fitting one single autocorrelation function

curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2012).
18. W. B. Baker et al., “Pressure modulation algorithm to separate cerebral hemodynamic signals from extrac-

erebral artifacts,” Neurophotonics 2(3), 035004 (2015).
19. R. M. Forti et al., “Optimizing a two-layer method for hybrid diffuse correlation spectroscopy and frequency-

domain diffuse optical spectroscopy cerebral measurements in adults,” Neurophotonics 10(2), 025008
(2023).

20. S. A. Carp, M. B. Robinson, and M. A. Franceschini, “Diffuse correlation spectroscopy: current status and
future outlook,” Neurophotonics 10(1), 013509 (2023).

21. H. Ayaz et al., “Optical imaging and spectroscopy for the study of the human brain: status report,”
Neurophotonics 9(S2), S24001 (2022).

22. R. Zhang, J. H. Zuckerman, and B. D. Levine, “Spontaneous fluctuations in cerebral blood flow: insights
from extended-duration recordings in humans,” Am. J. Physiol. Heart Circ. Physiol. 278(6), H1848–H1855
(2000).

23. M. M. Wu et al., “Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using
subject-specific magnetic resonance imaging models,” Biomed. Opt. Express 13(3), 1131 (2022).

24. E. Sathialingam et al., “Hematocrit significantly confounds diffuse correlation spectroscopy measurements of
blood flow,” Biomed. Opt. Express 11(8), 4786 (2020).

25. M. B. Robinson et al., “Portable, high speed blood flow measurements enabled by long wavelength, inter-
ferometric diffuse correlation spectroscopy (LW-iDCS),” Sci. Rep.-UK 13(1), 8803 (2023).

26. W. Zhou, M. Zhao, and V. J. Srinivasan, “Interferometric diffuse optics: recent advances and future outlook,”
Neurophotonics 10(1), 013502 (2023).

27. M. Zhao et al., “Interferometric diffusing wave spectroscopy imaging with an electronically variable time-of-
flight filter,” Optica 10(1), 42 (2023).

Hongting Zhao is a PhD student in the Wallace H. Coulter Department of Biomedical
Engineering, Georgia Institute of Technology, Emory University. Her research focuses on
improving brain sensitivity of cerebral blood flow using diffuse correlation spectroscopy.

Eashani Sathialingam received her bachelor’s degree in biomedical engineering from the
University of California, Irvine. She received her PhD in biomedical engineering from Georgia
Institute of Technology, Emory University, in 2022. She was a National Institutes of Health F31

Zhao et al.: Comparison of diffuse correlation spectroscopy analytical models. . .

Journal of Biomedical Optics 126005-12 December 2023 • Vol. 28(12)

https://doi.org/10.1117/1.nph.8.1.015001
https://doi.org/10.1117/1.nph.7.4.045002
https://doi.org/10.1117/1.JBO.19.1.016010
https://doi.org/10.1364/OE.16.015514
https://doi.org/10.1371/journal.pone.0274258
https://doi.org/10.1117/1.2007987
https://doi.org/10.1364/BOE.486363
https://doi.org/10.1364/BOE.438303
https://doi.org/10.1117/1.NPh.10.1.015010
https://doi.org/10.1117/1.nph.9.3.035002
https://doi.org/10.1364/BOE.7.003659
https://doi.org/10.1117/1.NPh.10.2.025013
https://doi.org/10.3389/fneur.2023.1052232
https://doi.org/10.1109/TBME.2012.2226885
https://doi.org/10.1117/1.nph.2.3.035004
https://doi.org/10.1117/1.nph.10.2.025008
https://doi.org/10.1117/1.nph.10.1.013509
https://doi.org/10.1117/1.nph.9.s2.s24001
https://doi.org/10.1152/ajpheart.2000.278.6.H1848
https://doi.org/10.1364/BOE.449046
https://doi.org/10.1364/BOE.397613
https://doi.org/10.1038/s41598-023-36074-8
https://doi.org/10.1117/1.nph.10.1.013502
https://doi.org/10.1364/OPTICA.472471


predoctoral fellow. Her PhD studies focused on developing algorithms and applying diffuse
optical technologies for in vitro and in vivo studies.

Seung Yup Lee is an assistant professor in the Department of Electrical and Computer
Engineering, Kennesaw State University. He is also an adjunct assistant professor in the
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology,
Emory University. He received his PhD in biomedical engineering from the University of
Michigan. His current research focuses on the development of portable optical spectroscopic
and imaging technologies for clinical applications.

Shasha Bai is an associate professor of Pediatrics and Biostatistics at Emory University. She also
serves as the director of the Pediatric Biostatistics Core at Emory and Children’s Healthcare of
Atlanta and the interim director of the Center for Clinical Outcomes Research and Public Health
at Emory University. Her career goal is to advance pediatric research by applying rigorous
statistical design and applications. Her research profile represents diverse topics in basic science,
translational and clinical, and community intervention research. Her statistical expertise includes
agreement and reliability measures in complex scenarios, pediatric clinical trials, longitudinal
data analysis, cluster-correlated studies, and analysis of categorical outcomes.

Erin M. Buckley is an associate professor in the Wallace H. Coulter Department of Biomedical
Engineering, Georgia Institute of Technology, Emory University, and the Department of
Pediatrics, Emory University. Her research interests include the development of translational
diffuse optical spectroscopies for noninvasive low-cost bedside monitoring of hemodynamics
in brain and other tissues.

Biographies of the other authors are not available.

Zhao et al.: Comparison of diffuse correlation spectroscopy analytical models. . .

Journal of Biomedical Optics 126005-13 December 2023 • Vol. 28(12)


