
Frontiers in Neurology 01 frontiersin.org

Multimodal and autoregulation 
monitoring in the neurointensive 
care unit
Jeffrey R. Vitt 1,2, Nicholas E. Loper 1 and Shraddha Mainali 3*
1 Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States, 
2 Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States, 3 Department of 
Neurology, Virginia Commonwealth University, Richmond, VA, United States

Given the complexity of cerebral pathology in patients with acute brain injury, 
various neuromonitoring strategies have been developed to better appreciate 
physiologic relationships and potentially harmful derangements. There is ample 
evidence that bundling several neuromonitoring devices, termed “multimodal 
monitoring,” is more beneficial compared to monitoring individual parameters as 
each may capture different and complementary aspects of cerebral physiology to 
provide a comprehensive picture that can help guide management. Furthermore, 
each modality has specific strengths and limitations that depend largely on 
spatiotemporal characteristics and complexity of the signal acquired. In this 
review we focus on the common clinical neuromonitoring techniques including 
intracranial pressure, brain tissue oxygenation, transcranial doppler and near-
infrared spectroscopy with a focus on how each modality can also provide useful 
information about cerebral autoregulation capacity. Finally, we discuss the current 
evidence in using these modalities to support clinical decision making as well as 
potential insights into the future of advanced cerebral homeostatic assessments 
including neurovascular coupling.
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Introduction

In patients with acute brain injury (ABI), there is a diverse and heterogenous range of 
pathologic processes that can often lead to irreversible neurologic insult. Following the primary 
injury, a cascade of maladaptive and deleterious physiologic processes can ensue in the form of 
edema, seizures, spreading cortical depolarization, metabolic failure, neuro-inflammation as 
well as impaired cerebrovascular reactivity, leading to cerebral injury and subsequent cellular 
death (1, 2). Prevention of secondary brain injury therefore is of paramount importance in 
neurocritical care with the goal of optimizing conditions to maximize the potential for recovery. 
Traditionally, management decisions have been guided by neurologic examination and 
neuroimaging; and while both provide invaluable clinical insights, in isolation, these approaches 
do not provide an understanding of the ongoing dynamic pathobiological processes, which 
when monitored can guide medical intervention in real time. As such, there has been an 
increased focus over the past few decades on the development and utilization of neuromonitoring 
techniques that allow for enhanced surveillance of cerebral physiologic parameters in order to 
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detect early signs of secondary brain injury and allow for goal directed 
interventions to stave off irreversible damage (3).

Though advances in neuromonitoring represent a major 
breakthrough in the field of neurocritical care and provide new 
insights in the complexity of ABI pathophysiology, a single 
neuromonitoring device is insufficient in providing a comprehensive 
scope of the intricate and dynamic nature of impaired cerebral 
physiology (4, 5). Subsequently focus has shifted to bundling 
complementary neuromonitoring techniques, termed multimodality 
monitoring (MMM), to enhance the predictive value of the physiologic 
outputs and allow for individualized patient management decisions 
(4, 6). One of the advantages of the expanded use of MMM is the 
ability to characterize cerebral autoregulation (CA) capacity, which 
has been validated as an important prognostic indicator and may 
be useful to guide hemodynamic decisions, with the goal of optimizing 
cerebral perfusion (7, 8).

This multifaceted approach has begun to reshape the landscape 
of neurocritical care by moving away from standardized “one size 
fits all” treatment strategies to individualized precision medicine; 
however, questions still exist including how to best integrate and 
interpret the high dimensionality of signals and whether such an 
approach will result in improved patient outcomes (3, 9). 
Furthermore, when interpreting monitoring data, it is important to 
recognize potential limitations of each modality and specific 
characteristics including whether it provides continuous or 
intermittent assessment as well as if the device is measuring focal 
or global cerebral parameters (10, 11). Common neuromonitoring 
tools employed in the neurologic intensive care unit (ICU) are 
highlighted in Figure 1. This review will provide the most recent 
update on MMM with a focus on invasive and non-invasive 
monitoring strategies that can be used to simultaneously provide 
CA assessment. Modalities that do not possess capabilities for CA 
evaluation, such as quantitative electroencephalography (qEEG) 
and cerebral microdialysis, will not be covered.

Cerebral physiology

Advances in neuromonitoring capabilities has allowed for 
enhanced understanding of complex cerebral physiologic 
relationships, both in normal homeostasis and with harmful 
derangements, with the potential to drive clinical management 
decisions. An understanding of major cerebral physiologic concepts 
is crucial for proper interpretation of MMM outputs and informed 
decision making for cerebral optimization.

Pressure-volume relationship

As the brain resides within the rigid and inflexible cranial vault, 
alterations in total volume result in corresponding changes in 
intracranial pressure (ICP). As described in the Monroe-Kellie 
doctrine, an increase in any of the components of the intracranial 
system, namely brain, blood and cerebrospinal fluid (CSF), must 
be accompanied by an equivalent volumetric reduction in another 
constituent to maintain homeostasis (12). Disproportionate increases 
in volume (such as cases of hematoma formation or acute 
hydrocephalus) are rapidly met with exhausted compliance and the 

pressure-volume relationship becomes non-linear where small 
alterations in volume induce large changes in ICP (12–14).

Examination of the ICP waveform can provide valuable insights 
into intracranial compliance and risk for deterioration (15, 16). In the 
absence of significant pathology, the ICP waveform has three notches 
corresponding to the systolic (P1), tidal (P2), and dicrotic waves (P3) 
and are of decreasing amplitude (16). As intracranial compliance 
decreases, P2 and P3 begin to exceed P1 and eventually P3 disappears 
leaving a sinusoidal morphology (12, 16). Elevation of P2 can predict 
risk for subsequent ICP crisis and during periods of severely elevated 
ICP there is often a reduction in ICP waveform complexity (15, 17).

Vasomotor reactivity

Under normal conditions, the brain requires a constant cerebral 
blood flow (CBF) of ~50–60 mL/100 g/min to maintain normal 
metabolic and physiologic conditions (18). Regulation of CBF involves 
a complex interplay between various cellular signaling pathways that 
act to modulate vascular tone to ensure optimal perfusion and 
homeostasis. The cerebrovasculature is particularly sensitive to 
changes in arterial blood carbon dioxide (PaCO2), pH, and to a lesser 
extent oxygen, through a process termed vasomotor reactivity (VMR) 
(19). PaCO2 acts as a fundamental regulator of CBF, with an ~3% 
increase in CBF for every 1 mmHg increase in PaCO2, through 
modulation of arteriolar tone by nitric oxide production and 
alterations in intracellular smooth muscle hydrogen and calcium ion 
concentrations (20, 21). Avoiding hypercarbia is particularly 
important for patients with reduced intracranial compliance and 
elevated ICP due to the potential for increase total cerebral blood 
volume (CBV) resulting from vasodilation (22). Excessive 
hyperventilation on the other hand, can dramatically reduce ICP 
through hypocapnic induced vasoconstriction, however may result in 
cerebral ischemia and secondary brain injury from neuronal 
ecotoxicity and diminished CBF (23). While not as potent a modulator 
of vascular tone under normal physiologic conditions as PaCO2, CBF 
is also impacted by changes in arterial blood oxygen (PaO2) with 
vasodilation occurring when arterial tension falls below 50 mmHg to 
protect against cerebral hypoxia (24).

Cerebral autoregulation

Autoregulatory status has gained recognition as a crucial 
protective homeostatic mechanism and an important determinant of 
mortality and functional outcome in patients with diffuse brain injury 
such as severe traumatic brain injury (TBI) and subarachnoid 
hemorrhage (SAH) (8, 25–28). First described in humans by Lassen 
and colleagues in 1959, CA describes the capacity of the cerebral 
pre-capillary arterioles to relax and constrict to changes in transmural 
pressure in order to ensure a constant cerebral blood flow (CBF) over 
a range of mean arterial pressures (MAP) (29). More recent 
investigations have demonstrated that the range of MAP during which 
CA remains intact is narrower than previously thought, even in 
otherwise healthy individuals, and is influenced by the rate of arterial 
pressure changes (Figure 2) (30). In the setting of ABI, the CA plateau 
may be further restricted, shifted or all together exhausted thereby 
predisposing patients to periods of ischemia or conversely hyperemia 

https://doi.org/10.3389/fneur.2023.1155986
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Vitt et al. 10.3389/fneur.2023.1155986

Frontiers in Neurology 03 frontiersin.org

whenever MAP falls outside the lower and upper limits of 
autoregulation, respectively (31). In such patients cerebral ischemia 
may occur under ranges of MAP typically considered normal, thus 
highlighting the potential significance of individualized assessment 
and optimization (26, 31, 32).

Early studies evaluating CA capacity in ABI focused on 
intermittent methods for CA determination including various 
neuroimaging modalities such as positron emission tomography 
(PET) and computed tomographic xenon (XE-CT) as well as indirect 
CBF estimation with transcranial doppler (TCD) in response to 
alterations in MAP either with vasopressors or non-invasively with 
techniques such as thigh-cuff deflation and orthostatic hypotension 
provocation (10, 33). More recently, novel methods have been 
developed for continuous assessment of CA indices based on CBF 
responses to spontaneous changes in MAP or cerebral perfusion 
pressure CPP and are outlined in Table 1 (44). These advances have 
enhanced the clinical applicability of CA and provided a foundation 
to develop monitoring and treatment protocols based off CA capacity 

(45). While there is of yet no primary data from large scale randomized 
controlled trials to support the use of CA monitoring, growing 
evidence from retrospective and prospective analysis suggests that it 
may provide crucial insights into the complexities of deranged cerebral 
physiology inherent in ABI patients and serve as a vital tool to drive 
clinical management decisions (26, 46–48). This is the topic of several 
ongoing clinical investigations that will hopefully provide further 
evidence of how continuous CA assessment may be used to drive 
patient care decisions (NCT03987139, NCT05670028, NCT02351518).

Neurovascular coupling

While there is mounting evidence regarding the integral role of 
CA, both as a prognostic marker and foundation for individually 
targeted management, the brain possesses other homeostatic 
mechanisms of equal or potentially greater importance for cerebral 
reserve and guarding against irreversible injury (49). The brain is a 

FIGURE 1

Graphical representation of cerebral multimodality monitoring modalities. Cerebral T, cerebral temperature; CMD, cerebral microdialysis; dEEG, depth 
electroencephalography; ECoG, electrocorticography; ICP, intracranial pressure; NIRS, near-infrared spectroscopy; PbtO2, partial pressure of brain 
tissue oxygenation; rCBF, regional cerebral blood flow; sEEG, surface electroencephalography; SvjO2, jugular bulb venous oximetry; TCD, transcranial 
Doppler. Reprinted with permission from open access publication corresponding author, Tas and colleagues (4). Professional illustration by Anna 
Sieben (Sieben Medical Art).
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highly metabolic organ, utilizing more than 20% of bodily oxygen and 
glucose despite comprising only 2% of body weight, and has limited 
capacity for intracellular energy storage thus rendering it dependent 
on a continuous and tightly regulated blood supply to regions with 
higher metabolic demand (50, 51). The governing mechanism 
regulating CBF in response to neuronal activity is termed 
neurovascular coupling (NVC) and is crucial for ensuring precise 
cerebral metabolic demands are met (52). NVC has been studied in a 
variety of conditions with evidence of impairment in chronic 
conditions such as hypertension, atrial fibrillation and Alzheimer’s 
Disease leading to blunted NVC response and oxidative stress (49, 53). 
Impaired NVC may also play a role in the development of delayed 
cerebral ischemia (DCI) with SAH animal models demonstrating 
impaired NVC throughout the acute period following aneurysm 
rupture, leading to an imbalance between metabolic demand and CBF, 
and rendering the brain vulnerable to ischemia in the face of spreading 
cortical depressions (54). In acute ischemic stroke (AIS) animal 
models, early impairment of NVC is associated with reduction in 
neuronally mediated feed-forward regulation of CBF as well as 
evidence of prolonged NVC disruption involving territories outside 
the zone of ischemia that does not resolve with the restoration of CBF, 
thus contributing to ongoing cerebral dysfunction and injury 
accumulation (52). Similar findings have been reported in human 
subjects, where global NVC dysfunction is described following AIS 

and correlated with the degree of vessel stenosis in addition to 
functional outcomes (34, 55, 56).

The majority of NVC research has focused on outpatient methods 
of assessment that rely on patient participation to perform cognitive, 
verbal or motor tasks with evaluation of a CBF response measured by 
non-invasive modalities such as TCD and advanced perfusion 
imaging (50, 52). While these methods are generally not suitable for 
patients in the ICU environment, several physiologic approaches 
leveraging MMM have been developed and allow for NVC assessment 
and recognition of disturbed cerebral physiology in critically ill 
patients. These methods often involve fast Fourier transformation of 
EEG signal into frequency bands to represent neuronal activity 
combined with a method of CBF estimation including ICP pulse-
waveform, near infrared spectroscopy (NIRS) and TCD alterations in 
response to electrocortical activity (57–61). Though these approaches 
have largely been investigated in small cohorts as proof of principle 
studies, a recent investigation involving nine comatose patients with 
various forms of ABI were studied using NIRS-EEG and found 
normalization of NVC predicted the recovery of consciousness with 
>99% accuracy (62). Though these results need to be validated in a 
larger and more diverse cohort, they highlight the promising role 
NVC may play in improving our understanding of disturbed cerebral 
physiology across a spectrum of neurologic disorders including 
disorders of consciousness. It remains to be seen whether enhanced 

FIGURE 2

Relationship between changes in MAP from baseline (Δ%MAP) and concomitant relative changes in CBF (Δ%CBF). Upper and lower limits of 
autoregulation demonstrated by linear correlation between MAP and CBF indicative of pressure passive state. NB. The classic Lassen’s curve 
demonstrating a wide range of autoregulation (~50–150 mm hg) has been challenged. It is suggested that a narrow range of autoregulation (~15–
200 mm hg) is likely to be more common, even in healthy individuals, and is influenced by the rate of arterial pressure changes.

https://doi.org/10.3389/fneur.2023.1155986
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Vitt et al. 10.3389/fneur.2023.1155986

Frontiers in Neurology 05 frontiersin.org

processes for monitoring and identifying disturbed NVC will provide 
a foundation to develop timely targeted interventions to ameliorate 
pathologic processes or refine our approach to prognostication.

Intracranial pressure monitoring

ICP monitoring was first described by Lundberg and colleagues 
in 1964 and has since become the most widely employed invasive 
monitoring technique with the largest amount of supporting data (4, 
63). Elevations in ICP are directly related to excess mortality and poor 
neurologic outcomes, likely through destructive mechanical forces as 
well as reduced cerebral perfusion leading to ischemia and oligemia 
within vulnerable brain parenchyma (32, 64–66). The two most 
utilized invasive modalities for ICP monitoring are intraventricular 

catheters and parenchymal monitors, both of which can provide 
continuous ICP data whereas the former also allows for therapeutic 
CSF diversion. In general, these modalities are considered monitors 
of global ICP given pressure equilibration in the intracranial vault, 
however, in certain conditions such a unilateral masses with associated 
large midline shift or posterior fossa or infratentorial lesions, there 
may be an associated pressure gradient leading to differential ICP 
measurements depending on catheter tip placement (67).

ICP monitoring is a central focus in the management of severe 
TBI and recommended (Level IIB) by the Brain Trauma Foundation 
(BTF) for all patients with a Glasgow Coma Scale (GCS) 3–8 and 
abnormal CT scan as well as for patients who have a normal CT head 
but meet at least two of the three following criteria: age >40 years, 
unilateral or bilateral motor posturing, or systolic blood pressure 
(SBP) <90 mmHg (68). Furthermore, the International 

TABLE 1 Neuromonitoring devices, physiologic outputs and autoregulation indices.

Modality Description Primary 
signal 
output

Relevant 
thresholds

Cerebral 
autoregulation 
indices

Signals 
correlated

Thresholds

Intracranial 

pressure 

monitoring

Invasive insertion into 

cranium. Most 

commonly in the 

ventricular or 

parenchymal space.

ICP

CPP

≤20 or 22 mmHg 

(34)

60–70 mmHg (34)

PRx ICP and MAP >0.2 Mortality (13)

>0.05 Unfavorable 

Outcome (13)

Brain tissue 

oxygenation

Invasive probe 

measuring oxygen 

tension in brain 

parenchyma. Reflects 

the balance between 

cerebral oxygen 

delivery, diffusion and 

demand.

PbtO2 >15–20 mmHg (35) ORx PbtO2 and CPP >0.3–0.4 Unfavorable 

Outcome (14)

Transcranial 

doppler

Non-invasive low 

frequency ultrasound 

capable of detecting 

proximal cerebral 

vessel blood flow

CBFV

PSV

EDV

MFV

PI

MCA MFV >160–

200 cm/s suggests 

vasospasm in SAH 

(36, 37)

MFV < 40 cm/s or 

EDV <20–25 cm/s 

associated with worse 

outcome in TBI

(38, 39)

PI>1.3–1.5 associated 

with worse outcome 

in TBI (40, 41)

Sx

Sx_a

Mx

Mx_a

PSV and CPP

PSV and MAP

MFV and CPP

MFV and MAP

>−0.2 Mortality (25)

>−0.15 Unfavorable 

Outcome

>0.05 Mortality (25)

>−0.1 Unfavorable 

Outcome

>0.3 Mortality (25)

>0.3 Unfavorable 

Outcome

>0.3 Unfavorable 

Outcome (25)

Near infrared 

spectroscopy

Non-invasive near 

infrared light source 

sensitive to 

oxygenation status of 

hemoglobin with 

ability to describe 

cerebral oxygenation 

and blood flow

rSO2

TOI

Absolute values 

<50–60% (42) or 

decline in baseline by 

>13% concerning for 

ischemia (43)

COx

TOI

THx

rSO2 and MAP

TOI and MAP

HbT and MAP

Limited clinical 

evidence to support 

clear thresholds

In general (+) values 

have been considered 

consistent with 

impaired 

autoregulation

ICP, Intracranial pressure; CPP, cerebral perfusion pressure; PRx, pressure reactivity index; MAP, mean arterial pressure; PbtO2, Brain tissue partial pressure oxygenation; ORx, Brain tissue 
oxygen reactivity index; CBFV, Cerebral blood flow velocity; PSV, peak systolic velocity; EDV, end diastolic velocity; MFV, mean flow velocity; PI, Pulsatility Index; SAH, subarachnoid 
hemorrhage; TBI, traumatic brain injury; Sx/Sx_a, systolic flow index; Mx/Mx_a, mean flow index; rSO2, regional cerebral oxygen saturation; TOI, tissue oxygenation index; COx, cerebral 
oximetry index; TOI, tissue oxygen reactivity index; THx, total hemoglobin index; HbT, total hemoglobin concentration.
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Multidisciplinary Consensus Conference on MMM in Neurocritical 
Care recommends ICP monitoring to better contextualize and 
interpret data generated from other monitoring devices given the 
robust level of evidence supporting its use (3). Adherence to a 
protocolized ICP management strategy in severe TBI has been 
demonstrated to decrease 2-week adjusted mortality and the recently 
published multinational SYNAPSE-ICU study found that ICP 
monitoring and management in a mixed cohort of ABI patients was 
associated with increased therapeutic intensity as well as improved 
neurologic outcome and 6-month mortality, with the largest 
magnitude of benefit in patients with more severe grade injury 
(69–71).

While it seems evident that avoidance of elevated ICP would 
be beneficial in ABI patients, efforts to define a precise treatment 
threshold for ICP have yielded variable results (66, 72, 73). In the 2000 
BTF guidelines, an ICP threshold of 20–25 mmHg was recommended 
and later refined to less than or equal to 20 mmHg in 2007 (74). In 
most recent 2016 published guidelines, further adjusted the 
recommended threshold to <22 mmHg, largely based on a single 
retrospective analysis of 459 severe TBI patients where 22 mmHg best 
predicted the intersection between mortality and favorable outcome 
(26, 68). Subgroup analysis in this study found a threshold of 
18 mmHg was more accurate for female and elderly patients, 
highlighting the heterogeneity present in subpopulations, and further 
studies have demonstrated that ICP values as low as 10 mmHg may 
still confer harm in some patients raising the question if a single “one 
size fits all” threshold is suitable (26, 75). These questions are further 
magnified by the results of the BEST TRIP trial where a management 
strategy solely focused on maintaining ICP at 20 mmHg or less was 
not shown to be  superior to care based on imaging and clinical 
examination (76). More recently, the concept of a pressure-dose model 
has arisen which weighs both the magnitude and duration of 
pathological ICP to help inform treatment decisions (Figure  3) 
(32, 64, 77). According to this model, even ICP values below guideline 

recommended treatment thresholds (15–20 mmHg) can induce injury 
if sufficiently sustained whereas in one study, ICP values above 
20 mmHg and 30 mmHg correlate with worse outcome after 37 and 
8 min, respectively (32). These findings suggest that ICP should not 
be viewed as a dichotomous parameter with values below a particular 
threshold regarded as safe and those above considered dangerous in 
all patient populations. Moreover, this research has illuminated how 
vulnerability to ICP-related injury largely depends on CA status where 
even small elevations are poorly tolerated when CA is compromised 
(32, 78).

Cerebral perfusion pressure

Another important physiologic parameter indirectly measured 
from ICP monitoring is CPP, expressed by MAP-ICP, and reflects the 
driving pressure to the brain parenchyma. The BTF recommends 
maintaining CPP between 60 and 70  mmHg based on historical 
observational data demonstrating worse outcomes with lower 
thresholds as well as evidence of heightened risk for acute respiratory 
distress syndrome (ARDS), likely due to increased vasopressor use 
and fluid balance, when uniformly targeting CPP above 70 mmHg (8, 
79, 80). Modest elevations in CPP have been shown to have a 
protective effect against ICP insults. However, recent investigations 
have demonstrated the ideal range of individualized CPP appears to 
be quite variable and highly dependent on CA status with evidence of 
average CPP <70 mmHg being poorly tolerated in those with impaired 
CA (26, 31, 32).

Pressure reactivity index

CA capacity can be  assessed by the Pressure Reactivity Index 
(PRx), which is a moving Pearson’s correlation that expresses the 

A B

FIGURE 3

Population based incracranial pressure (ICP) intensity map stratified by autoregulatory status. Red areas indicate areas where ICP intensity is associated with 
poor outcome, while blue areas indicate good outcomes. Patients with intact autoregulation tolerate longer durations and intensities of ICP elevation 
compared to those with impaired autoregulation where no safe zone could be identified. (A) Intact autoregulation (mean PRx <= 0.3), (B) Impaired 
autoregulation (mean PRx > 0.3). Reprinted with permission from open access publication corresponding author, Akerlund and associates (52).
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relationship between slow-wave changes in ICP, a surrogate marker of 
pulsatile CBV, in response to alterations in MAP/CPP where positive 
values denote impaired CA and negative values suggest intact 
cerebrovascular reactivity (13). Multiple studies have validated the 
prognostic importance of PRx in TBI populations with thresholds of 
+0.05 and +0.25 for poor neurologic outcome and mortality, 
respectively (7, 26, 81). Certain TBI populations appear particularly 
susceptible to impaired CA following TBI as measured by PRx 
including the elderly as well as those with diffuse injury patterns (47, 
82). Additionally, elevated PRx has been correlated with impaired 
cerebral metabolism and energy utilization in addition to expansion 
of cerebral edema following parenchymal contusion (83, 84). Trending 
continuous PRx as a function of ICP fluctuations recently has been 
used to assign individual ICP thresholds, where ICP values at which 
PRx is >+0.2, was found to have superior predictive value compared 
to static thresholds for mortality and functional outcomes (85, 86). 
Using a similar methodology, plotting PRx against CPP allows for the 
determination of optimal CPP (CPPOPT), where CPP values with the 
lowest associated PRx are interpreted as most ideal for preservation of 
autoregulatory status and a target for hemodynamic management 
(Figure 4) (7, 8). TBI patients with a median CPP that more closely 
approximates CPPOPT have been found to have improved cerebral 
oxygenation, more favorable markers of cerebral energy metabolism, 
and better clinical outcomes (25, 87–90). Recently, the Phase II 
COGITATE study published their results and highlighted the safety 
and feasibility of a CPPOPT guided protocol compared to BTF guideline 
recommendations of CPP 60–70 mmHg (46). Though not powered for 
outcomes, fewer patients died in the intervention arm (23% vs. 44%) 
with no increased in therapeutic intensity level or adverse events 

suggesting that such a strategy is achievable and safe in clinical 
practice and may improve functional recovery in TBI by ensuring 
adherence to individualized optimal physiologic targets.

Though PRx and CPPOPT targeted therapy hold promising 
potential to transform the landscape of neurocritical care management 
and are the most well-established of all the continuous CA indices, 
there are several important limitations and questions that must 
be acknowledged. PRx requires exhausted intracranial compliance in 
order to visualize changes in ICP in response to minimal alterations 
in CBV and therefore may provide inconclusive results in patients 
lacking significant mass effect or with highly compliant cranial 
compartments such as seen in age-associated atrophy or following 
decompressive hemicraniectomy (35, 47, 91). Just as ICP monitoring 
represents a global evaluation of pressure, PRx represents a global 
estimator of CA and therefor is unable to characterize heterogeneous 
patterns of disturbed CA (90, 92). Furthermore, PRx requires high-
frequency signal processing, on the level of second-by-second data 
acquisition which is labor intensive, expensive, and not widely 
available for clinical monitoring outside of several specialized 
academic centers. As a result, CPPOPT can be challenging to estimate 
in a significant number of individuals, particularly in the elderly, with 
16–45% of monitored 4–6 h epochs in retrospective analysis incapable 
of generating a CPPOPT (25, 35, 89, 91). To address this issue, several 
studies have explored the use of minute-by-minute low-resolution 
PRx compared to standard PRx, finding that it is comparable in 
regards to outcome prediction and CPPOPT determination albeit with 
slightly lower precision (81, 93). These advances have the potential to 
expand the adoption of these monitoring approaches across a broader 
range of clinical settings lacking high-resolution signal monitoring 

FIGURE 4

Graphic representation of U-shaped curve of PRx values as a function of CPP. CPPopt identified as the CPP value with the lowest associated PRx and 
most optimal autoregulatory state. PRx, pressure reactivity; CPP, cerebral perfusion pressure; ICP, intracranial pressure.
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however, widespread implementation cannot be expected until clinical 
efficacy is proven (90). Furthermore, innovations in non-invasive 
approaches to neuromonitoring such as automated robotic TCD has 
the potential to provide analogous and complementary information 
in ABI populations (94).

Cerebral oxygen monitoring

Though ICP/CPP monitoring plays a crucial role in the 
management of ABI, it does not provide information about the 
adequacy of cerebral perfusion and the underlying metabolic 
demand (CMRO2). Following ABI, derangements in CBF and 
oxidative metabolism are common and contribute to secondary 
brain injury in the form of cerebral hypoxia and metabolic crisis, 
independent of ICP and CPP (95–97). PET studies in patients with 
TBI reveals evidence of regional microvascular collapse leading to 
decreased diffusion capacity and ischemia occurring both in areas 
with damage and those that appear structurally normal on imaging 
(98). In clinical studies, the magnitude and duration of cerebral 
hypoxia has been shown to correlate with worse neurologic 
outcomes and increased mortality making it an attractive target for 
neuromonitoring (97, 99). The two most widely used modalities for 
cerebral oxygenation include jugular venous oxygen saturation 
(SjvO2), which measures the balance between global CBF and 
CMRO2, and brain tissue oxygen partial pressure (PbtO2) that 
provides information regarding CBF in addition to oxygen diffusion 
and delivery (100). As SjvO2 monitoring is not capable of continuous 
CA assessment and has largely fallen out of favor in most centers, 
this section will focus exclusively on PbtO2 (101).

Brain tissue oxygen partial pressure

Monitoring PbtO2 requires surgical placement, often into the 
subcortical white matter, and detects focal changes in oxygen tension 
(102, 103). PbtO2 is a complex and multidimensional physiologic 
parameter that reflects CBF in addition to oxygen delivery, diffusion 
and consumption (100). Normal values are between 23 and 35 mmHg 
though when <15–20 mmHg and <10 mmHg are considered moderate 
and severe hypoxia, respectively, with proportionate risk for 
irreversible cerebral ischemia (103–105). Given the focal nature of 
PbtO2 monitoring, regional variability is common and there is debate 
on whether monitors should be  placed in healthy appearing 
parenchyma or in perilesional tissue that theoretically is most 
vulnerable to secondary insults (103, 105). Though values generated 
from perilesional tissue may provide the best discrimination for 
neurologic outcome, precise placement of probes is technically 
challenging and PbtO2 response to treatment is often blunted 
compared to healthy tissue (106, 107). In keeping with this notion, the 
protocol for the ongoing randomized controlled trial, “Brain Tissue 
Oxygen Monitoring and Management in Traumatic Brain Injury 
(BOOST-III)” includes placement of monitors 2 cm from the cortical 
surface in the least trauma-affected frontal lobe to promote 
consistency of practice and data interpretation (108). Probe position 
should always be confirmed on imaging and either FiO2 or MAP 
challenge should be utilized to ensure appropriate function before 
attempting to interpret data.

Low PbtO2 recordings are frequent following ABI, occurring in up 
to 87% of individuals during monitoring, and influenced by a variety 
of clinical insults including elevated ICP and suboptimal CPP leading 
to impaired CBF (65, 95, 109). Multiple studies have also demonstrated 
the importance of CA in maintaining normal PbtO2 with evidence 
that cerebral hypoxia is more common when CPP falls below PRx 
derived CPPOPT (88, 110, 111). Ensuring adequate systemic 
oxygenation is imperative to improving cerebral hypoxia and under 
usual conditions PbtO2 is very responsive to increases in FiO2. 
However, if PbtO2 is not responsive to increase in FiO2, other 
contributory factors should be assessed such as hemoglobin level, 
temperature, brain edema and ICP. It is also important to note that 
prolonged periods of hyperoxia may increase the risk of excitotoxicity 
(112, 113). In practice, maintaining a minimum PaO2 > 90 mmHg or 
SpO2 > 94–98% appears pragmatic to avoid cerebral hypoxia and 
recently the concept of a brain oxygen (BOx) ratio (PbtO2/PaO2) was 
introduced to assist in recognizing altered cerebral physiology even in 
the setting of normal PbtO2 due to overtreatment with FiO2 (114, 115). 
Optimization of PbtO2 requires an multidimensional tiered approach 
involving various measures aimed at correcting hypoxemia, reducing 
ICP, augmenting CPP and decreasing CMRO2 (113, 116).

Treatment response to subthreshold PbtO2 is predictive for 
survival whereas the duration and magnitude of cerebral hypoxia are 
strongly correlated with increased mortality and poor neurologic 
outcome (97, 99, 113, 117). In aneurysmal SAH, low PbtO2 can predict 
symptomatic vasospasm though the sensitivity depends heavily on 
whether the probe location corresponds to the affected vascular 
territory (118, 119). PbtO2 represents the second most commonly 
used invasive neuromonitor after ICP and the two together are the 
most widely published MMM combination (4). Bundling PbtO2 and 
ICP/CPP compared to managing ICP/CPP in isolation has been 
explored in multiple retrospective analyses, both in TBI and SAH 
populations, and found improved mortality and functional outcomes 
associated with combined therapy with no increase in length of stay 
or serious adverse events including ARDS (95, 99, 120–123). Though 
large prospective trial data is lacking, a 2015 small multicenter study 
found that PbtO2 and ICP/CPP guided therapy was associated with 
more aggressive ICP control and higher CPP with a trend toward 
improved functional outcomes at 6 months compared to ICP 
management alone (124). More recently the BOOST-II trial 
demonstrated that a protocolized PbtO2 and ICP/CPP combined 
management strategy was safe, feasible and associated with a lower 
burden of cerebral hypoxia and while not powered for outcome, 
demonstrated a trend toward lower mortality and better neurologic 
outcomes (108). Though the data at this time remains too limited to 
recommend widespread implementation of PbtO2 monitoring, based 
on the promising preliminary studies presented there are several 
Phase III multicenter randomized controlled trials currently 
underway, including BOOST-III, BONANZA, and OXY-TC, which 
will hopefully provide further insights into the role of PbtO2 based 
therapy in severe TBI management (36, 95).

Brain tissue oxygen pressure reactivity 
index

Intact CA function appears to exert a protective force in 
preventing cerebral hypoxia though low PbtO2 itself has also been 
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implicated in the development of disturbed cerebrovascular reactivity 
(37, 110). Several studies have explored the relationship between 
PbtO2 and changes in CPP, termed Brain Tissue Oxygen Pressure 
Reactivity Index (ORx), which is a moving linear correlation 
coefficient of PbtO2 and CPP data obtained in 10–30 s intervals (37, 
125). ORx has been postulated as an index of CA, similar to PRx, with 
negative values and those near 0 considered intact while disturbed CA 
is assumed as ORx approaches +1 (27). ORx values were correlated 
with unfavorable outcomes in a single study with a threshold of 
+0.3–0.4 and other investigations have demonstrated higher values 
associated with vasospasm and DCI in SAH patient populations (27, 
28). Agreement between ORx and PRx has yielded mixed results with 
several studies demonstrating concordance between the two indices, 
particularly when PbtO2 is low, though it diverges when PbtO2 exceeds 
40 mmHg with an increase in ORx despite stable PRx (27, 37). 
Subsequent investigations have yielded poor correlations between the 
two indices and an absence of a clear threshold for prognosticating 
outcomes or ability to determine a CPPOPT based on ORx (125–127). 
PbtO2 is a complex physiologic parameter influenced by a multitude 
of different systemic and cerebral factors, with CPP being only one 
aspect, likely hindering precise estimation of CA (116). In a high-
resolution TBI dataset, PbtO2 failed to demonstrate a reliable response 
to slow-wave fluctuations in MAP or ICP as would be expected in a 
surrogate of CA, further calling into question whether PbtO2 is an 
appropriate parameter for CA derivation (125). Furthermore, PbtO2 
involves monitoring a relatively small focal area of parenchyma, which 
can exhibit significant regional variability, thereby reducing 
generalizability and the ability to infer overall CA capacity (105, 106). 
At present, the data supporting ORx as a reliable surrogate of CA is 
limited and caution should be  exercised before using it clinically. 
Further investigation is warranted to better understand circumstances 
when it may be of utility.

Transcranial Doppler

Transcranial Doppler (TCD) is a non-invasive neuromonitoring 
technique that has been used in clinical practice since first described 
by Aaslid and colleagues in 1982 to examine CBF in the basal cerebral 
arteries (128). CBF velocity (CBFV) and directionality can 
be determined from the degree of doppler shift created by a moving 
column of red blood cells through the proximal cerebral vasculature 
(129). TCD utilizes a low frequency probe (2 MHz) to penetrate the 
skull with the most common windows for insonation being the 
transtemporal and suboccipital approaches in which CBFV can 
be measured in the anterior and posterior circulations, respectively 
(130). Furthermore, the ophthalmic artery and carotid siphon can 
be insonated through the transorbital approach and the submandibular 
window allows for evaluation of the cervical portion of the internal 
carotid artery (129). While CBFV is proportional to CBF, TCD is 
unable to accurately account for vessel diameter, making it impossible 
to draw direct conclusions about CBF as vasodilation and 
vasoconstriction can also produce reciprocal changes in CBFV (130). 
Similar to the arterial waveform, the TCD flow velocity (FV) waveform 
is pulsatile, though lower resistance with continuous flow throughout 
the cardiac cycle, and allows for quantification of peak systolic velocity 
(PSV), end diastolic velocity (EDV) and mean flow velocity (MFV) 
parameters (131).

MFV is very sensitive to corresponding alterations in vessel 
caliber, making TCD a valuable screening tool for large vessel 
vasospasm in aneurysmal SAH and TBI (132, 133). Multiple 
thresholds for grading vasospasm have been proposed with the 
strongest level of evidence and predictive value found in MFV 
obtained from the middle cerebral arteries (MCA) (134, 135). MFV 
exceeding 160–200 cm/s in the MCA has a high positive predictive 
value (PPV) for moderate to severe angiographic vasospasm while 
those <120 cm/s are unlikely to have clinically significant spasm (136, 
137). The Lindegaard Ratio reflects the MFV of the MCA relative to 
the ipsilateral ICA and is a useful tool to contextualize elevated 
velocities more related to vasospasm or hyperemia (138). The rate of 
vasospasm evolution and overall severity diagnosed on TCD, are 
established risk factors for the development of DCI, with a 90% 
sensitivity and 92% negative predictive value (NPV), thus allowing for 
early targeted intervention to prevent irreversible cerebral infarction 
and further supports the role of TCD for routine surveillance 
monitoring in this setting (40, 133, 138). In addition to vasospasm 
monitoring, TCD is a valuable modality in AIS evaluation with high 
sensitivity for microembolic signals which can be  used for risk 
stratification of future ischemic events in the setting of carotid 
stenosis, blunt cerebrovascular injury, as well as cardiac disease and 
may be  useful for guiding decisions for anticoagulation (38, 41, 
139, 140).

Furthermore, FV waveform morphology is sensitive to alterations 
in CBF and provides valuable insights regarding perfusion status in 
different vascular beds. For example, elevated ICP characteristically 
leads to a more pronounced systolic upstroke and loss of the 
Windkessel notch due to external compression as well as reduced 
EDV signifying impaired diastolic flow (Figure 5) (131, 141, 142). 
When ICP exceeds the diastolic closing pressure, a reversal of diastolic 
CBFV is observed and may eventually progress to cerebrocirculatory 
arrest characterized by oscillating flow patterns, systolic spikes or 
absent flow and can be used as an acillary confirmatory test in brain 
death determination (143). Conversely, in patients with hyperemia 
due to disturbed CA or arteriovenous malformations, waveforms are 
typically low-resistance with high EDV relative to PSV and a 
diminished dicrotic notch (39).

While these point of care applications are very useful in clinical 
practice, TCD is often performed in an isolated or intermittent fashion 
which limits the ability to capture dynamic alterations in the FV 
waveform and longitudinal changes in cerebrovascular hemodynamics 
(94). Furthermore, TCD signal acquisition is highly operator 
dependent and technically challenging with ~10% of patients lacking 
adequate temporal acoustic windows (144). Despite these limitations, 
recent innovations in automated robotic technology have made 
prolonged monitoring with TCD more suitable for the ICU 
environment to derive flow based indices for risk stratification and 
goal directed therapies (Figure 6) (145).

Pulsatility index, FV thresholds and 
prognosis

The degree of waveform resistance can be  quantified by the 
Gosling pulsatility index (PI) [(PSV-EDV)/MFV] which has gained 
particular interest due to its association with ICP and inverse 
relationship with CPP in the setting of brain injury (146, 147). Though 
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FIGURE 5

(A) Normal appearing low resistance TCD waveform. PSV, Peak systolic velocity; EDV, End Diastolic Velocity; * Windkessel Notch; ∆  Dicrotic Notch. 
(B) Hyperemic appearing waveform with elevated EDV, absent dicrotic notch and low pulsatility index (PI). (C) High resistance waveform with low EDV 
and elevated PI. (D) Extremely elevated intracranial pressure with peaked systolic upstroke and reversal of diastolic flow in a patient with cerebral 
circulatory arrest.
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FIGURE 6

(A) Transcranial doppler (TCD) robotic headset placement. (B) Automated robotic scanning for intracranial vessel. (C) Continuous bilateral middle 
cerebral artery recordings with power M-mode and spectral doppler. Viasonix Dolphin/XF TCD Robotic Probe, Imaging Monitoring United States®.
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this correlation has been validated in several investigations, 
particularly in the extremes of ICP and CPP, PI is a complex parameter 
influenced by multiple different factors including distal 
cerebrovascular resistance (CVR), CPP, arterial blood pressure (ABP), 
pulse amplitude, heart rate and cerebral artery compliance, making 
direct parallels with ICP/CPP challenging (148–150). This shifting 
relationship is highlighted during a hyperventilation challenge where 
an expected increase in CPP occurs due to a drop in ICP however PI 
paradoxically increases as a result of arteriolar vasoconstriction and 
increased CVR (148). Notwithstanding these limitations, elevated PI 
above 1.3–1.5 in patients with TBI has been linked to increased risk 
of neurologic decline and worse outcome, particularly if measured 
within the first 24 h of admission, and predict the development of 
malignant cerebral edema, herniation and midline shift in patients 
with MCA territory ischemic stroke (151–153).

TCD derived CBFV measurements also provide useful 
information regarding the competency of cerebral perfusion, with low 
values suggestive of oligemia, and have been linearly correlated with 
CBF using computed tomography perfusion (CTP) in patients with 
diffuse traumatic injury patterns (154). A low-flow state defined as 
MCA MFV below 40 cm/s, occurs in over half of TBI patients during 
the first 24 h after injury, most often ipsilateral to focal pathology and 
correlates with the burden of cerebral hypoxia (PbtO2 <20 mmHg) 
(155, 156). The combination of elevated PI (suggesting increased 
resistance) with MFV 35–40 cm/s or EDV <20–25 cm/s (signifying 
impaired CBF) identifies TBI patients with particularly high risk of 
poor outcome and has even been validated in a mixed ICU population 
of patients with coma for mortality (152, 153, 157, 158). In addition 
to prognostication, TCD based thresholds may be used to recognize 
patients at risk for early deterioration and guide targeted therapy in 
hopes of preventing cerebral hypoperfusion. This has been exemplified 
in single center studies where mannitol administration in patients 
with hemispheric injury led to improvement in dangerously low MFV 
as well as aggressively treating abnormal TCD findings with 
hyperosmolar therapy, vasopressors and surgical intervention leading 
to normalization of TCD parameters in over 80% of patients (159, 
160). Though external validation is required to better understand 
optimal treatment thresholds and the impact of TCD goal-directed 
therapy on outcomes, these studies illustrate how non-invasive TCD 
may provide insights into cerebral physiology at the bedside and 
inform personalized management decisions to limit secondary 
brain injury.

Non-invasive ICP and CPP

The TCD waveform is responsive to changes in vascular tone and 
CBF with corresponding alterations in morphology in the setting of 
fluctuations in ICP and ABP (161, 162). Given this close relationship, 
there has been significant emphasis placed on developing non-invasive 
quantitative methods for ICP and CPP estimation (nICP and nCPP) 
based on TCD waveform morphological features (161). Initial efforts 
focused on PI as a quantitative measure of non-invasive ICP (nICP) 
given the strong correlation between the two parameters during 
periods of ICP elevation (148). The most favorable results were 
published by Bellner in 2014, expressed as nICP = 10.927 × PI – 1.284 
with a 95% confidence interval of ±4.2 mmHg and strong correlation 
coefficient (R = 0.94), however these results could not be replicated in 

other patient populations (149, 163). Subsequent nICP investigations 
using PI have yielded less promising results with a wide range of 
confidence intervals, likely owing to factors other than ICP that 
impact PI, and suggest a limited role for PI in nICPP 
determination (161).

Several other quantitative approaches have focused on nCPP. This 
allows for nICP estimation using the mathematical relationship 
nICP = ABP – nCPP. These methodologies rely on TCD and ABP 
waveform analysis and include the diastolic flow velocity model 
(nICP_FVd), which leverages the close relationship between EDV and 
CPP, and the critical closing pressure (CrCP) model (nICP_CrCP) 
based on the concept of the minimum ABP required to prevent 
microvascular circulation and cessation of blood flow (161, 164, 165). 
A 2016 study from Cambridge United  Kingdom compared these 
approaches in addition to PI derived nICP (nICP_PI) and a 
mathematical “black box (BB)” model (nICP_BB). Using a prospective 
TBI cohort with invasive ICP monitoring, researchers found that 
nICP_FVd, nICP_CrCP and nICP_BB generally performed well in 
ICP estimation with nICP_BB providing the most accurate ICP 
prediction with the least bias (166). In contrast, nICP_PI was the most 
sensitive to changes in ICP however proved to be the worst estimator 
of absolute ICP values.

Subsequent investigations using these non-invasive methods in 
different populations has produced mixed results with evidence of 
good correlation, though less accurate prediction, of absolute nICP 
and nCPP values (167, 168). The multicenter IMPRESSIT-2 study 
found nICP estimation based on nICP_FVd resulted in a high NPV 
for ICP >20 mmHg and >25 mmHg, 91.3 and 98.6%, respectively, 
though a concordance correlation between nICP and invasive ICP of 
only 33.3% (169). Conversely, in a recent study involving 100 TBI 
patients, nICP_FVd had essentially no agreement with invasive ICP 
(R = −0.17; 95% CI: −0.35, 0.03; p = 0.097) and a sensitivity of 0% for 
detecting ICP >20 mmHg, though notably few patients had elevations 
in ICP in this cohort (170). Similar findings have been reported in 
nCPP estimation in children with TBI using nICP_CrCP where the 
ability to identify CPP values below 70 mmHg was excellent 
(AUC = 0.91; 95% CI: 0.83–0.99) though overestimated true CPP by 
about 20 mmHg and was less precise for more clinically relevant 
thresholds of CPP < 60 mmHg and <50 mmHg (167). In another 
pediatric TBI study, both nICP_FVd and nICP_CrCP were compared 
against invasive monitoring and while there was a strong correlation 
between both models and CPP, each were also associated with wide 
limits of agreement and unable to discriminate CPP values 
<50–60 mmHg (171). Although the performance characteristics of 
current non-invasive TCD models preclude the ability to precisely 
measure ICP and CPP, they may still serve as a primary assessment 
tool in the acute stages of management or in patients who are not 
candidates for invasive monitoring. Furthermore, combining TCD 
parameters with other noninvasive non-invasive indices such as optic 
nerve sheath diameter and pupillometry may improve the diagnostic 
accuracy to identify patients with elevated ICP (172, 173).

TCD derived autoregulatory indices

Given the close relationship of the TCD waveform to fluctuations 
in perfusion, evaluating for CA is made possible by way of a moving 
correlation coefficient to model the relationship between alterations 
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in CBFV in response to slow wave changes in CPP. These indices 
including Mx, Sx, and Dx which correspond to TCD derived MFV, 
PSV, and EDV, respectively (174). In TBI patients, Mx is the most 
well-established index and appears to accurately capture dynamic CA 
fluctuations with evidence of a pressure passive state when significantly 
elevated and exhibits a moderate correlation to ICP-derived PRx (48, 
162, 175). In particular, during elevations in ICP above 30 mmHg, 
there is an observed divergence which may be explained in part by the 
fundamental differences in how the two indexes relate to 
cerebrovascular physiology (48, 175, 176). In contrast, Sx appears to 
more closely approximate PRx, potentially related to increased systolic 
peaks and arterial pulsatility in the setting of elevated ICP, while Dx 
appears to possess limited clinical utility (45, 48). Both Mx and Sx 
correlate with mortality as well as neurologic outcome in TBI 
populations with evidence from several reports suggesting that Sx may 
possess superior outcome prediction characteristics (44, 48, 174). 
Using a small TBI cohort, Mx and Sx were found to have a parabolic 
relationship with CPP, thus allowing for determination of CPPOPT with 
overall good agreement compared to PRx (42). Furthermore, by 
substituting ABP for CPP, Mx_a, and Sx_a can be determined with the 
potential to estimate PRx and CPPOPT without the need for an ICP 
monitor and may provide a path forward for use of TCD-based 
advanced cerebral monitoring and goal directed therapy in a wider 
population of critically ill patients without invasive monitors (145, 
174, 177).

Other potential advantages of TCD rely on the fact that it can 
interrogate different vascular beds and provide a better understanding 
of physiologic asymmetries, including CA capacity, compared to other 
global monitors. CBF is highly heterogeneous in patients following 
TBI with more frequent loss of CA ipsilateral to the site of injury and 
the overall magnitude of TCD-derived hemispheric CA asymmetry 
has been demonstrated to confer an increased risk of death and poor 
neurologic outcome (43, 178). In patients presenting with MCA 
stroke, the degree of CA dysregulation, as measured by the ipsilateral 
Mx_a, correlates with worse functional outcomes and larger overall 
final infarct volumes (179). Similar findings have been described in 
patients presenting with spontaneous intracerebral hemorrhage (ICH) 
where a gradual decline in CA capacity ipsilateral to the hemorrhage 
location over the first 5 days was associated with a decline in clinical 
exam and worse 90-day outcomes (180). In SAH, increases in Mx_a 
and Sx_a have been associated with the development of vasospasm in 
the ipsilateral hemisphere and combining radiographic vasospasm 
with increasing Mx_a from baseline over the first 7 days from ictus has 
been correlated with the development of DCI (181, 182).

Given advances in TCD technology, it is conceivable that CA 
could be monitored simultaneously in different hemispheres to allow 
for more precise evaluation of heterogeneous cerebral physiology and 
estimation of regional CPPOPT. Furthermore, unlike PRx, which is 
based on changes in ICP as a surrogate of CBV and relies on the 
intracranial pressure-volume relationship, TCD more directly 
measures CBF and can provide insights into dynamic CA changes 
even in the setting of highly compliant intracranial systems where PRx 
may not demonstrate significant fluctuations (35, 47). Despite these 
reasons for optimism, much work still needs to be done to validate 
TCD as a feasible continuous or semi-continuous monitoring 
technique as the majority of published studies report only snap-shots 
in time with no study reporting monitoring durations longer than 4 h 
(183). Furthermore, the vast majority of TCD derived CA reports are 

from data generated at the Addenbrooke’s Hospital in Cambridge 
United Kingdom, highlighting the need for external validation in 
different hospital settings and patient populations (183). Recently, a 
proposed protocol was published for a prospective multicenter study 
in severe TBI patients utilizing TCD with ICP/PbtO2 monitors with 
the goal of obtaining high-fidelity continuous data and correlate TCD 
based indices such as Mx/Mx_a, Sx/Sx_a, and CrCP with invasive 
parameters (94). This study and others like it may enhance our 
understanding of how TCD based indices may complement or 
alternatively serve as a surrogate for other MMM outputs and identify 
clinically relevant targets for future interventions.

Near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) is a non-invasive monitoring 
modality that can provide real-time information about regional 
cerebral oxygenation and CBF. The basis of this technology involves 
the emission of a near-infrared light source, in the range of 
700–1,100 nm, to penetrate through the skin, cranium and most 
superficial few centimeters of brain (184). Depending on different 
tissue characteristics and cellular interfaces, the emitted light can 
either be  scattered, reflected back to the detector, or absorbed by 
different chromophores such as protein, lipids and water (185). 
Hemoglobin is one such important organic macromolecule that 
exhibits differential absorption spectra characteristics depending on 
oxygenation status, thus allowing for determination of relative 
concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin 
(HHb) in tissue according to the Modified Beer–Lambert law (186, 
187). This technique provides estimates of total hemoglobin 
concentration (HbT) as well as the ratio of HbO to HbT called 
regional cerebral oxygen saturation (rSO2) or Tissue Oxygenation 
Index (TOI) depending on the manufacturer (185, 188). Similar to 
PbtO2, rSO2, and TOI reflect the balance between oxygen supply and 
demand within the distal arterial, venous and capillary territory and 
has demonstrated good correlation with invasively obtained absolute 
CBF values in critically ill patients (189–191). The majority of NIRS 
applications involve placing optodes over the forehead and measure 
signal over the frontal lobe gray matter and watershed zone of the 
anterior and middle cerebral arteries with the normal range of rSO2 
being 55–80% (192, 193).

Low rSO2/TOI values, defined as <50–60% is concerning for 
ischemic insult in a single study demonstrating TOI thresholds of ≥75 
and <55% correlating well with CPP values above and below 
70 mmHg, respectively (192, 194). Though these thresholds serve as a 
reference, intra-patient optical measurement can vary significantly 
depending on cranial geometry and it is often more useful to monitor 
for relative changes in rSO2/TOI to detect cerebral ischemia (195). In 
TBI patients monitored with NIRS, cerebral hypoxia and 
hypoperfusion events are common even in the presence of accepted 
normal CPP range and has been correlated with more severe grade 
injury and higher likelihood of mortality (196, 197). NIRS has also 
been studied extensively in comparison to other modalities for 
cerebral oxygen assessment including to SjvO2, which is a global 
measure of cerebral oxygen supply and utilization, and exhibits a 
modest correlation with conflicting findings regarding sensitivity to 
changes in ABP, PaCO2, and CPP (191, 198, 199). Similarly when 
compared to PbtO2, NIRS has demonstrated variable levels of 
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concordance with one study reporting an inability to detect clinically 
significant episodes of low PbtO2 with a high failure rate due to poor 
sensor-skin contact, scalp hematoma and subdural air after cranial 
procedures (185, 200). Conversely in a study with 42 TBI patients, 
NIRS and TCD demonstrated parallel findings with PbtO2, though 
more rapidly detected alterations in ABP and ICP, supporting the 
concept that no single bedside monitor represents the “gold standard” 
for cerebral oxygenation, with each device appearing to monitor 
different components of cerebral oxygenation, and may enhance 
diagnostic utility when used in complementary overlapping 
approaches (201, 202).

Autoregulation indices

Multiple studies have explored the capacity of NIRS for 
non-invasive CA determination by correlating slow wave oscillations 
in NIRS derived parameters, such as rSO2, TOI, or HbT, with 
alterations in ABP or CPP resulting in the Cerebral oximetry index 
(COx), Tissue Oxygen Reactivity Index (TOx) and Total Hemoglobin 
Reactivity Index (THx), respectively (203, 204). These indices have 
been validated in piglet animal models, where they demonstrate a 
strong agreement with laser-doppler flow measurements and were 
capable of detecting both upper and lower limits of autoregulation 
during controlled titration of ABP (205–208). In clinical studies, NIRS 
based indices have been compared to ICP derived PRx with good 
overall correlation however a less robust agreement has been described 
in the presence of insufficient slow wave power or during periods of 
significant NIRS interhemispheric variance (203, 209).

TOx and COx are the most widely used parameters for CA 
estimation and demonstrate a strong correlation with TCD-derived 
Mx/Mxa (r = 0.55–0.81) in both operative and ICU based studies 
with thresholds of ~0.2–0.3 denoting loss of CA (210–213). 
Furthermore, combining Sx_a and TOx in SAH patients appears to 
strengthen the predictive capabilities for detection of DCI, likely 
due to measurement of different, though complementary, anatomic 
components of the cerebral vascular system for enhanced 
surveillance (214, 215). In mixed ICU populations, impaired CA as 
determined by TOx/COx has been correlated with the development 
of ICU delirium and all-cause mortality at 3 months presumably 
due to CBF dysregulation (216–218). Multiple investigations have 
also assessed the utility of NIRS in cardiac arrest patients, who often 
do not have invasive neuromonitoring and guidelines for 
hemodynamic management have traditionally focused on static 
thresholds (219). In these studies, higher TOx/COx values over the 
first 3 days is independently associated with an excess in mortality 
(220). Additionally several studies have demonstrated the feasibility 
of determining optimal MAP based on COx with evidence of a wide 
diversity of optimal thresholds across individuals, likely reflecting 
different cerebral injury patterns and impact of preexisting 
hypertension, with more favorable outcomes noted when the actual 
MAP more closely aligns with NIRS derived thresholds (219, 221, 
222). These findings highlight the potential utility of NIRS 
technology to provide a foundation for non-invasive individualized 
hemodynamic management in patients with hypoxic ischemic brain 
injury. Similar findings have been reported in TBI patients using 
COx derived CPPOPT, which when compared to ORx, more strongly 
correlates with PRx derived thresholds with evidence that deviations 

between actual CPP and CPPOPT of >10 mmHg are more likely to 
be associated with adverse outcomes (223).

Other studies have focused on THx, alternatively referred to as 
Hemoglobin Volume Index (HVx), which, in contrast to the CBF 
weighted TOx/COx, may be  more reflective of CBV-based 
measurements in a similar fashion to PRx (193, 203). In a cohort of 40 
TBI patients, THx demonstrated a significant association with PRx in 
individual recordings with ~50% of recordings suitable to determine 
optimal CPP and MAP with good agreement compared to PRx 
derived thresholds (204). In another TBI study, while correlation with 
PRx was similar between THx and TOx, albeit with large limits of 
agreement, THx demonstrated poor correlation with Mx supporting 
the notion that NIRS may provide information about distinctive 
features of CBF compared to TCD based parameters with the potential 
for complementary assessment in clinical situations where invasive 
monitoring is not otherwise indicated or safe (203).

Similar to TCD, NIRS has the advantage of being completely 
non-invasive, portable and capable of providing regional assessment 
of cerebral physiology and oxygenation. In contrast to TCD however, 
NIRS has the added benefit of being non-operator dependent, easily 
applied in the operative and ICU environments, without the need for 
frequent calibration and capable of generating continuous monitoring 
data (185, 187). Multiple different NIRS techniques have been 
developed with particular strengths and limitations in addition to 
proprietary algorithms and indices. For example, depending on the 
manufacturer, the ratio of HbO relative to HbT can be described by 
rSO2 as well as TOI, ScO2, and SpO2 with similar, though not 
completely interchangeable, values (188). The most common 
techniques include fixed wavelength, spatially-resolved, frequency-
resolved, time-resolved and diffuse correlation spectroscopy 
techniques which are beyond the scope of this review to individually 
detail though differ in their associated cost, depth of measurement, 
precision and ability to provide complementary information about 
absolute CBF as well as CMRO2 (187).

Though advances in NIRS technology provides grounds for 
optimism regarding the development of non-invasive assessment of 
cerebral hemodynamics, oxygenation and metabolism, there are 
several limitations that must be addressed. First, NIRS requires a close 
spatial relationship between the cortex and cranium and is prone to 
inaccurate readings in the setting of post-operative pneumocephalus, 
skin pigmentation, scalp edema, extracranial hemodynamics, frontal 
contusions, and hemorrhage which are all common in neuro-ICU 
populations (224–226). As a regional monitor, it is only sensitive for 
changes in the superficial cortical structures, often restricted to the 
frontal brain region, and is unable to detect distant ischemic events 
(204). As a complex physiologic parameter, NIRS-based cerebral 
oxygenation is also influenced by a multitude of physiologic factors 
thus limiting attempts to draw direct conclusions about cerebral 
respiration and CBF. Efforts to establish clear prognostic thresholds 
are hindered by a multitude of different proprietary indices and 
conflicting reports across diverse pathologies and patient populations 
(185, 195, 211, 227). While the assortment of different NIRS based 
technologies allows for focused investigation and novel insights into 
aspects of cerebral physiology, the reporting of multiple similar yet 
distinct parameters limits the generalizability of scientific findings 
across different devices (228). The role of NIRS monitoring in 
neurocritical care populations has yet to be  verified in large, 
multicenter trials, and at this time should continue to be explored 
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under the context of clinical research. Further investigation is required 
to determine optimal NIRS based technology, monitoring parameters, 
and thresholds to optimize CA and potentially improve neurologic 
outcomes across a spectrum of ABI patients with particular focus in 
populations where invasive monitoring is not routinely performed or 
is otherwise contraindicated.

Current limitations and future 
directions

While it is evident that MMM allows for improved characterization 
of complex and often interrelated neurophysiologic determinants, 
considerable heterogeneity exists in the application and utilization of 
advanced neuromonitoring due to lack of familiarity, cost of high-
resolution data acquisition and uncertainty regarding clinical efficacy 
(4, 9). Though there is accumulating data to suggest that targeted 
management of cerebral parameters such as pressure, blood flow and 
metabolism may prevent neurologic deterioration, there is a lack of 
high-quality prospective data to support widespread implementation 
of protocolized monitoring strategies. Even when considering CA and 
the advances in continuous assessment capabilities, current 
therapeutic interventions appear entirely inadequate to correct 
dysregulated CA thus underscoring the gap in our understanding of 
molecular and cellular pathways involved in cerebral homeostasis 
(229–231). Future research will need to focus on improved methods 
of data collection with more clearly defined pathologies, clinically 
meaningful outcomes, and assessment of secondary neurologic injury. 
As the number of MMM strategies expands, integrative approaches 
with a focus on standardized methods of real-time data visualization 
and analysis will be needed to translate these approaches effectively 
from research into clinical practice (232). Additionally, leveraging 
machine learning technology to provide automated detection of 
multidimensional physiologic patterns may help forecast deleterious 
events and provide an opportunity to intervene before there is risk of 
permanent injury thereby engaging in preventive rather than 
reactionary treatment approaches (233–235).

Conclusion

There is ample mounting evidence that invasive and non-invasive 
neuromonitoring techniques provide instrumental information 
regarding the cerebral physiome that otherwise would not be possible 
with standard bedside clinical assessment and imaging alone. 
Integration of various neuromonitoring modalities using a central 

interface at the bedside allows clinicians to monitor physiologic data 
in real time, which, not only facilitates improved understanding of 
complex neurophysiologic processes but can also guide targeted 
interventions to restore cerebral homeostasis. Goal directed therapy 
using neuromonitoring tools can however, only be  realized when 
multimodal data is collected and integrated using high-resolution 
time-synchronized data collection and archiving system. Such 
technological advances have the potential to transition neurocritical 
care from standardized “one size fits all” treatment paradigm based on 
epidemiologic studies, to a focus on precision medicine centered on 
continuously adjusted individualized thresholds with the goal of 
improving patient outcomes. Substantial need still exists for innovative 
methods of enhanced data integration and interpretation as well as 
high-quality outcome-based studies before widespread application 
and acceptance can be expected.
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